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ABSTRACT

A unique approach for applying
neurocomputing technology for accurate CAD of
microwave circuits is described. In our proposed
method, a multilayer perception neural network
(MLPNN) is trained to predict the scattering
parameters of MMIC passive elements based on
the element’s physical dimensions, The s-
parameters were obtained by performing a full-
wave electromagnetic (EM) analysis of these
elements. An X-band MLPNN spiral inductor
model is developed. The MLPNN computed s-
parameter values are in excellent agreement with
those obtained from EM simulations with
correlations greater than 0.99 for all modeled
parameters.

INTRODUCTION

For MMIC design the effectiveness of
modern CAD methods relies on accurate models
of active and passive circuit elements. As circuit
densities and operating frequencies increase, the
accuracy of conventional modeling techniques
become questionable. Typical circuit simulator
supplied passive element models do not
accurately account for the parasitic and coupling
effects which occur at microwave/millimeter
wave frequencies [1]. To remedy this situation,
libraries of passive components have been
developed by actually fabricating, testing, and
storing the results of hundreds of elements [2].
This approach is problematic since the libraries
are process dependent, costly to create, and limits
the designer to a discrete set of components.

More recently, electromagnetic (EM)
analysis tools have become commercially

available which accurately mc~del passive
structures into the millimeter wave frequency
range [3]. EM simulation effectively models
passive element dispersion and mutual coupling
effects ignored by traditional circuit simulation
tools. However, EM simulation methods, such
as those in [4], take tremendous computational
efforts and are not practical for interactive CAD.

In this paper a methodology is described
in which a MLPNN is implemented to model
monolithic IC passive elements Ito nearly the
same degree of accuracy as that afforded by EM
simulation. An example is provided in which the
s-parameters of microstrip square spiral inductors
are modeled. Inputs to the neural network model
are the physical dimensions of the inductor and
the desired frequency. The outputs are the s-
parameters for that inductor at tlhe respective
frequency points. Chce trained, the computation
time of the modeled parameters is negligible,
which makes the MLPNN models suitable for
interactive CAD applications. Furthermore, the
MLPNNs ability to generalize may eliminate the
need to always perform such time consuming EM
simulations.

To demonstrate the application of this
technique, a MLPNN is trained to model the s-
parameters of 32 distinct square spiral inductors
at X-band, 7-11 GHZ in 1 GHz steps. The s-
parameters were obtained from full wave
electromagnetic simulations. Also, the MLPNNs
ability to generalize the s-parameters of inductors
outside the training set is demonstrated.

EM SIMULATIONS

Electromagnetic simulation of square
spiral inductors were performed using ein from
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Sonnet Software [5]. Scattering parameters for
32 inductors were obtained over a frequency
range of 1 to 15 GHz at 1 GHz intervals. The
physical dimensions of the inductors varied in
width (10, 15, 20, 25 pm), length (200, 225,
275, 300 ~m), spacing (10, 15, 20 pm), and
number of turns (1.5, 2.5). The dielectric and
metalization were consistent for all inductors.

Since the spiral inductor is a passive
component the magnitude and phase of the
forward transmission coefficient (S21) is
equivalent to the magnitude and phase of the
reverse transmission coefficient (S 12). In this
work, it was observed that the magnitude of the
input reflection coefficient (S 11) and the
magnitude of the output reflection coefficient
(S22) were also nearly equal. Therefore, only a
set of five s-parameters (MAG S 11, ANG S 11,
MAG S21, ANG S21, and ANG S22) were used
for MLPNN modeling and the subsequent
comparisons between the EM simulated and
MLPNN computed s-parameters.

MLPNN MODELS

The neural network architecture used in
this modeling effort is the multilayer perception
neural network. The governing equations of the
MLPNN and the algorithm used to implement it
is given in [6]. The MLPNN is trained in the
supervised mode using the generalized delta
learning rule. It has one hidden layer and uses
continuous perceptions. The size of the hidden
layer was determined experimentally by selecting
the number of hidden nodes which resulted in the
lowest training error while maintaining adequate
generalization. Each model took less than 15
minutes to train on a 100 MHz computer.

A block diagram of the MLPNN model is
shown in Figure 1. The input parameters for the
model are the frequency and the inductor’s
physical dimensions. The resulting outputs
represent the simulated s-parameter values.
Training and test data vectors are created by
forming an input-output parameter pair for each
inductor.

RESULTS

Two examples are given below. In the
first example, an MLPNN was trained and tested
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Figure 1. Block diagram of MLPNN model.

using all 32 data vectors. This example
determines the network’s ability to accurately
learn the complex input-output mappings present
in the data. The correlations between the EM
simulated s-parameters and the MLPNN
computed s-parameters were computed as given
in [7] as

(1)

where xi is the measured value, yi is the MLPNN

computed value, i is the measured sample mean,

and ~ is the MLPNN computed sample mean.
The correlation coefficient, r, for each output
parameter is given in Table 1. The MLPNN
modeled parameters are extremely accurate with
correlations approaching one.

Figures 2a and b show scatter plots of
EM simulated and MLPNN modeled values for
the magnitude and angle of the forward
transmission coefficient, MAG S21 and ANG
S21, respectively. These results exhibit
minimum error and provide an excellent
indication of the MLPNN’s ability to capture the
input-output relationships present in the data.

In the second example, the same 32 data
vectors from the first example were used to
examine the MLPNN’s ability to generalize. The
data set was examined, and 25 vectors were
selected for MLPNN training. The remaining 7
vectors were used to test network generalization.
Table 2 lists the correlation coefficient between
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TABLE 1

Correlation coefficient between the EM simulated
and MLPNN computed s-parameter values from
example one.

OUT MAG ANG MAG ANG ANG
PUT Sll Sll S21 S21 S22

r .9903 .9995 .9924 .9997 .9999
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Figure 2. Scatter plot of EM simulated and
MLPNN computed parameters from the first

example a) MAG S21 b) ANGS21

the EM simulated s-parameters and the MLPNN
modeled s-parameters for the test data set. As
indicated by the values of the resulting correlation
coefficients listed in Table 2, there is excellent
agreement between the EM simulated and
MLPNN computed values over the desired
frequency. There exist a minimal decrease in r
value between the training set of example 1 and
test set of example 2<

Figures 3a and b show scatter plots of
EM simulated and MLP”NN modeled values for
the magnitude and angle of the forward
transmission coefficient, MAG S;! 1 and ANG
S21, respectively. These results exhibit
minimum error and provide an excellent
indication of the MLPNN’s ability to provide
accurate generalizations.

TABILE 2

Correlation coefficients from the second example
between the EM simulated and MLPNN
computed s-parameter values for the test set.

~ OUT I MAG I ANG I MAG I ANG I ANG [

B%i&mwa
The purpose of the second example was

simply to obtain some measure of the MLPNN’s
ability to generalize the data. The results indicate
that the network is capable of providing accurate
generalizations. The authors are currently
conducting a detailed design of experiments to
establish the extent to which the MLPNN can
generalize the inductor data.

CONCLUSIONS

This paper presents an approach in which
a neural network is employed to accurately model
microwave monolithic IC passive element
characteristics. The MLPNN demonstrates the
ability to compute s-parameters nearly as accurate
as those obtained from full wave electromagnetic
simulations. Once trained, the com~putation time
is negligible as colmpared to other techniques
such as full wave EN1. This computational speed
makes the network suitable for interactive CAD
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Figure 3. Scatter plot of EM simulated and
MLPNN computed parameters from the example
2 test set a) MAG S21 b) ANG S21.

applications. This approach demonstrates that the
performance of passive elements at microwave
and/or millimeter wave frequencies can be
accurately predicted without the need to develop
costly model libraries.

The MLPNN also exhibits the capability
to generalize and predict quite accurate model

parameters for data outside the training set.
However, a detailed design of experiments
approach needs to be taken before this can be
fully established. Although the two examples
illustrated only inductor passive element
modeling, the methodology may be applied to
other passive elements.
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